upworthy

energy

UCI doctoral candidate Mya Le Thai has developed a nanowire-based technology that allows lithium-ion batteries to be recharged hundreds of thousands of times.

There's an old saying that luck happens when preparation meets opportunity.

There's no better example of that than a 2016 discovery at the University of California, Irvine, by doctoral student Mya Le Thai. After playing around in the lab, she made a discovery that could lead to a rechargeable battery that could last up to 400 years. That means longer-lasting laptops and smartphones and fewer lithium ion batteries piling up in landfills.

A team of researchers at UCI had been experimenting with nanowires for potential use in batteries, but found that over time the thin, fragile wires would break down and crack after too many charging cycles. A charge cycle is when a battery goes from completely full to completely empty and back to full again.

But one day, on a whim, Thai coated a set of gold nanowires in manganese dioxide and a Plexiglas-like electrolyte gel.

batteries, renewable energy, energy, renewable batteries, rechargeable batteries, innovationBatteries being recycled at WRWA, London. Nov ‘21Photo by John Cameron on Unsplash

"She started to cycle these gel capacitors, and that's when we got the surprise," said Reginald Penner, chair of the university's chemistry department. "She said, 'this thing has been cycling 10,000 cycles and it's still going.' She came back a few days later and said 'it's been cycling for 30,000 cycles.' That kept going on for a month."

This discovery is mind-blowing because the average laptop battery lasts 300 to 500 charge cycles. The nanobattery developed at UCI made it though 200,000 cycles in three months. That would extend the life of the average laptop battery by about 400 years. The rest of the device would have probably gone kaput decades before the battery, but the implications for a battery that that lasts hundreds of years are pretty startling.

- YouTubewww.youtube.com

“Mya was playing around, and she coated this whole thing with a very thin gel layer and started to cycle it,” said Penner added. “She discovered that just by using this gel, she could cycle it hundreds of thousands of times without losing any capacity.”

“That was crazy,” he added, “because these things typically die in dramatic fashion after 5,000 or 6,000 or 7,000 cycles at most. ”"The big picture is that there may be a very simple way to stabilize nanowires of the type that we studied," Penner said. "If this turns out to be generally true, it would be a great advance for the community." Not bad for just fooling around in the laboratory.

Since her discovery, Mya Le Thai has gone on to a successful career as the Principal Scientist with the Enevate Corporation,

This article originally appeared eight years ago.

True

We all want the world to be better and what better place to start than at home? Enter: Wildgrid, an all-female team providing education and empowering women to “electrify” their homes.

Why women? Women make 91% of ALL decisions in their households. And that’s no small thing when it comes to sustainability – 20% of all carbon emissions are from our homes! Electricity, gas-burning stoves, furnaces, hot water heaters, and many more – all of these everyday appliances make a big difference in how eco-friendly our homes are.

So what is the fastest way to make major reductions in household carbon emissions? Educating and empowering women!

Creating a more energy-efficient home – called electrification – is a process that can often feel confusing and overwhelming, particularly to folks who are often marginalized in male-dominant spaces.

“In spaces with men where this kind of topic is being covered, I find myself feeling [overwhelmed]... I found it really great that it was for women,” said one Wildgrid user who took Wildgrid’s women-only education course, Voltage Vixens.

Wildgrid’s online tool is simple, intuitive, and requires no previous background in sustainability to understand. To calculate all the rebates you qualify for, visit WildgridHome.com.

True
Whole Foods Market

This article originally appeared on 12.17.14


Here's something you may not have known: In 2008, we grew enough food for 11 billion people.


(Reminder: There are just over 7 billion humans here on Earth.)

But half of that food went to feeding animals (you know, so we could eat them). And a great deal also went to fueling cars.

Clearly, we're not hurting when it comes to our ability to grow food. But how we grow that food matters. In the industrial system that feeds much of the globe, it takes 10 calories of fuel to produce one calorie of food.

Which, let's be honest, is not the most efficient process. That's why so many people are keen on growing food organically — by which Wikipedia tells me means:

In other words, organic farming involves growing food more naturally with fewer resources. But here's a good question: Can organic food feed the world?

Allow me to quote noted food expert Michael Pollan:

"In industrial areas, organic [farming] achieves 92% of the yield of industrial [farming]. But you go to the developing world, and it produces 182% of current yield."

Not too shabby, eh? Maybe there's some hope for our food system after all.

For the full talk (don't worry, it's short), check out the clip below.

True
Green Mountain Energy

Leroy Mwasaru was a high school student at Kenya's prestigious Maseno School when a dorm room renovation created an unfortunate situation.

The school's outdoor latrines overflowed into the local water supply.

Understandably, this made some people quite upset. But Mwasaru saw this as an opportunity to turn something revolting into a revolution.


[rebelmouse-image 19469680 dam="1" original_size="500x274" caption="All GIFs from Makeshift/YouTube." expand=1]All GIFs from Makeshift/YouTube.

If he could redirect the overflowing human waste, it could give them cleaner water and help the school save money on fire and electricity.

See, at that same time, his school was spending a lot of money on firewood, which, like many Kenyan buildings, it used to fuel its kitchens, heat, and lights. It can be labor intensive to gather all that wood — and it's even more expensive to buy it.  Plus, all the soot and ash it creates is not good for the staff to consume on such a regular and large-scale basis.

[rebelmouse-image 19469681 dam="1" original_size="1200x624" caption="Mwasaru and his friends speak with school staff about the wood-burning furnace. Image from MakeShift/YouTube." expand=1]Mwasaru and his friends speak with school staff about the wood-burning furnace. Image from MakeShift/YouTube.

So Mwasaru thought — why not use a biogas digester instead?

In his sophomore year biology class, he had learned how these digesters can harvest natural bacterial byproducts, such as human waste and turn it into natural gas energy through a process called anaerobic digestion.

"I initially researched renewable energy and biogas [digesters] just to satisfy my intellectual curiosity," Mwasaru explains over email. "After a while, it became so much more than biology — there was chemistry too. It got to solving problems my local community faced, such as lack of access to affordable renewable energy."

[rebelmouse-image 19469682 dam="1" original_size="1189x574" caption="Students on the Maseno School campus. Image from MakeShift/YouTube." expand=1]Students on the Maseno School campus. Image from MakeShift/YouTube.

Mwasaru recruited a group of friends, and over the next year, they built a working prototype biogas digester for the school.

His initial proposal was met with some level of resistance from the community. "I want to burn our poop to fuel the kitchen" isn't exactly the kind of thing anyone wants to hear from a high school student.

"That's what pushed me to make sure it came to pass, and made sure it benefited them. Sometimes it's the bad energy you get that pushes you to do stuff," Mwasaru says.

Their earliest tests began by collecting raw "fuel" in the form of cow dung, food waste, fresh cut grass, and eventually, water.

These components were then mixed together into a paste...

... that they poured into a plastic vessel — the digester itself.

The natural bacteria contained in all these ingredients was more than enough to spark the anaerobic process as it broke down the organic waste materials.

Over time, the dense physical waste drops down to the bottom of the container, separating from the bacteria's combustible gas byproduct, which can then be collected and used for energy.

Lighting a burner with harvested biogas.

Granted, there were a few hiccups along the way. "I have to credit the failures we have had," Mwasaru says. "Our very first bio-digester prototype had too much gas and exploded, so we had to re-learn and re-invent the model until it was stable."

After a little trial and error, Mwasaru and friends completed their first working prototype — and it was good enough to earn them a coveted spot at the Innovate Kenya startup camp.

See this video here of how his small-scale prototype worked here:

It demonstrated the basic way that the anaerobic process could be contained within a single plastic vessel with pipes to move the gas along, while directing all the other organic waste into the ground. It wasn't enough to power the entire school on its own, but it was a start.

Then, at the startup camp, the teens had the opportunity to work alongside student engineers from MIT to hone and refine their project.

[rebelmouse-image 19469688 dam="1" original_size="1212x683" caption="Mwasaru, left, with his friends Amos Dede and Charles, who also worked on the biogas project. Image from MakeShift/YouTube." expand=1]Mwasaru, left, with his friends Amos Dede and Charles, who also worked on the biogas project. Image from MakeShift/YouTube.

In fact, the product that this high schooler devised was so impressive that it earned them funding from Global Minimum — a charitable organization that encourages young innovators and leaders in Africa — to build a second,  improved prototype.

"Leroy seeks to understand everything he doesn't know by asking probing questions, taking notes and experimenting to learn," said David Moinina Sengeh, an MIT Researcher who also serves as Global Minimum's board president, in an interview with CNN. "His curiosity to explore and learn from doing within a motivation to bring broader social change is something that we hope to see in all our youth and frankly everyone."

Mwasaru speaking at the One Young World summit in Arizona. Photo provided by Leroy Mwasaru.

As work began on the next, larger prototype, Mwasaru had the opportunity to travel to America to speak at prestigious conferences, such as Techonomy and One Young World.

He also returned home to the small village where his father still lives and helped to install a biogas digester there too, using the dung from his father's six cows. It generates enough gas for him to share with the other 30 houses in the village. Plus, it made things easier for the women in the village — another cause that Mwasaru is passionate about — who were sometimes spending up to 24 hours a week collecting firewood.

"When I deployed the Biogas pilot in my rural home, I mainly envisioned it as a way of leveraging sustainable renewable energy to make the world a better place through my community," Mwasaru says. "Now I believe through our activities that other sectors [such as women empowerment] could benefit immensely from the approach."

[rebelmouse-image 19469690 dam="1" original_size="1200x624" caption="The dining hall at Maseno School. Image from MakeShift/YouTube." expand=1]The dining hall at Maseno School. Image from MakeShift/YouTube.

The biogas digester project has since grown into a full-fledged startup/social enterprise called Greenpact — with Mwasaru serving as its CEO.

Since graduating from Maseno School, Mwasaru has taken a gap year to focus on the company's mission to address the lack of affordable renewable energy and proper sanitation that affects some 9 million Kenyan households.

He hopes to steer the company into an impactful organization that offers a wide range of products and services, including biogas digesters. He does have plans to go to college — but for now, Greenpact is his priority.

"I didn't see myself focusing on renewable energy but after doing some work in the field I figured out that I am actually more into renewable energy than I had imagined," Mwasaru says.

Now he's determined to show the world how to turn energy into opportunity and vice versa. The only way to do that is to stop seeing things as waste and start seeing them as resources instead.